Sains Malaysiana 54(6)(2025): 1465-1475

http://doi.org/10.17576/jsm-2025-5406-03

 

Utilizing Gravity Surveys for Subsurface Feature Identification in Foundation Planning

(Menggunakan Tinjauan Graviti untuk Pengecaman Ciri Subpermukaan dalam Perancangan Asas)

 

NORDIANA MOHD MUZTAZA1,6,*, THANATH GOPALAN2, NUR AMANINA MAZLAN2, JAMALUDIN OTHMAN3, NAZRIN RAHMAN4, NAJMIAH ROSLI4, ROSLI SAAD1,4,6, FARID NAJMI ROSLI1,4, ATHIRAH ROSLI4 & YASIR BASHIR5

 

1School of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia

2Mass Rapid Transit Corporation Sdn Bhd Headquarters, Tingkat 5, Menara I & P1, 46 Jalan Dungun, Bukit Damansara, 50490 Kuala Lumpur, Malaysia

3SubMAP Geophysical Services Sdn. Bhd, A-5-10, Empire Tower, SS16/1, 40750 Subang Jaya, Selangor, Malaysia

4Global GeoExperts Sdn. Bhd., 737-6-5, Kompleks Sri Sg Nibong, Jalan Sultan Azlan Shah, 11900 Bayan Lepas, Pulau Pinang, Malaysia

5Geophysical Engineering, Istanbul Technical University, Istanbul, Turkey

6Pusat Geokejuruteraan Tropika (GEOTROPIK), Aras 2 Blok D03, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia

 

Diserahkan: 12 Jun 2024/Diterima: 28 Mac 2025

 

Abstract

Understanding the distribution and extent of solution features such as cavities and pinnacles in limestone bedrock is crucial for anticipating potential challenges and planning appropriate foundation solutions. This study employed microgravity surveying to complement available borehole data and map karst features, particularly cavities, within the limestone bedrock. The survey was conducted on a 5 m × 5 m grid interval, establishing a total of 91 stations. Reduced Bouguer and residual anomalies were contoured and plotted using the GEOSOFT Oasis Montaj Mapping system. Anomalies of interest were further analyzed through 2-D gravity modeling using PotentQ software to determine the dimensions of the causative bodies. The survey results, presented as Bouguer, residual, and Bouguer anomaly horizontal gradient maps, showed a small range of gravity values (-9.24 to -9.10 mGal), indicating minimal variation in limestone bedrock topography. Gravity highs were associated with shallow limestone bedrock, while isolated gravity lows suggested the presence of cavities. Horizontal gradient maps highlighted peaks corresponding to the edges of these cavities and potential channel-like features. Borehole data corroborated the microgravity findings, with bedrock encountered at depths between 9.6 m and 12.3 m indicating deeper bedrock towards the south. The 2-D gravity modeling suggested a sediment-filled cavity approximately 7 m thick and 15 m wide in an east-west orientation, aligning well with borehole data. The combined use of borehole data and microgravity surveying proved effective in characterizing subsurface karst features, providing valuable insights for foundation planning leading to safer and more efficient construction practices.

Keywords: Anomaly; Bouguer; cavities; limestone; microgravity

 

Abstrak

Pengetahuan tentang taburan dan ciri larutan seperti rongga dan puncak batu kapur adalah penting untuk meramal potensi cabaran dan merancang pembinaan tapak yang sesuai. Kajian ini menggunakan survei mikrograviti untuk melengkapkan data lubang bor yang sedia ada dan memetakan ciri karst, khususnya rongga dalam batuan kapur. Survei dilakukan dengan sela grid 5 m × 5 m, berjumlah 91 stesen. Anomali Bouguer yang dikurangkan dan baki digambarkan menggunakan sistem pemetaan GEOSOFT Oasis Montaj. Anomali yang menarik dianalisis lebih lanjut melalui pemodelan graviti 2-D menggunakan perisian PotentQ untuk menentukan dimensi jasad yang menjadi punca. Keputusan survei yang diketengahkan sebagai peta anjakan Bouguer, baki dan gradien mendatar anjakan Bouguer mendedahkan julat kecil dengan nilai graviti (-9.24 hingga -9.10 mGal), menunjukkan variasi minimum dalam topografi batuan kapur. Anjakan graviti tinggi dikaitkan dengan batuan kapur cetek, manakala anjakan graviti rendah menunjukkan kehadiran rongga. Peta gradien mendatar menunjukkan puncak yang sepadan dengan tepi rongga ini dan ciri potensi berbentuk saluran. Data lubang bor mengesahkan penemuan mikrograviti dengan batuan kapur dijumpai pada kedalaman antara 9.6 m dan 12.3 m menunjukkan batuan kapur yang lebih dalam ke arah selatan. Pemodelan graviti 2-D menyarankan keberadaan rongga berisi endapan dengan ketebalan kira-kira 7 m dan lebar 15 m dengan orientasi timur-barat, sejajar dengan data lubang bor. Penggunaan data lubang bor dan survei mikrograviti terbukti berkesan dalam pencirian karst di bawah permukaan, memberikan maklumat penting untuk perancangan tapak yang lebih selamat dan cekap dalam amalan pembinaan.

Kata kunci: Anomali; batu kapur; Bouguer; mikrograviti; rongga

 

RUJUKAN

Abdeitawab, S. 2013. Karst limestone foundation geotechnical problems, detection and treatment: Case studies from Egypt and Saudi Arabia. International Journal of Scientific & Engineering Research 4: 376-387.

Agus, S., Yoichi, F., Jun, N. & Takahito, K. 2015. Detecting land subsidence using gravity method in Jakarta and Bandung Area, Indonesia. Procedia Environmental Sciences 23: 17-26.

Ahmad, T.I. & Noorliza, C.L. 2004. Detecting subsurface voids using the microgravity method - A case study from Kuala Lipis, Pahang. Geological Society of Malaysia Bulletin 48: 31-35.

Arisona, A., Ishola, K.S., Muliddin, M., Hamimu, L.A. & Hasria, H. 2023. The potential of microgravity technique in subsurface cavities detection at Chan Sow Lin Site in Kuala Lumpur, Malaysia: A case study. Modeling Earth Systems and Environment 9: 771-782.

Beres, M., Luetscher, M. & Olivier, R. 2001. Integration of ground-penetrating radar and microgravimetric methods to map shallow caves. Journal of Applied Geophysics 46(4): 249-262.

Branston, M.W. & Styles, P. 2003. The application of time-lapse microgravity for the investigation and monitoring of subsidence at Northwich, Cheshire. Quarterly Journal of Engineering Geology and Hydrogeology 36(3): 231-244.

Eslam, E., Ahmed, S. & Keisuke, U. 2001. Detection of cavities and tunnels from gravity data using a neural network. ASEG Extended Abstracts 2001(1): 1-5. DOI: 10.1071/ASEG2001ab036

Gambetta, M., Armadillo, E., Carmisciano, C., Cocchi, L. & Tontini, F.C. 2011. Determining geophysical properties of a near-surface cave through integrated microgravity vertical gradient and electrical resistivity tomography measurements. J. Cave Karst Stud. 73: 11-15.

Gómez, O. & Martín, C. 2012. Assessing the risk of subsidence of a sinkhole collapse using ground penetrating radar and electrical resistivity tomography. Engineering Geology 149-150: 1-12.

Gyesoon, P., Samgyu, P., Myeong, J.Y., Hyoungrae, R., Seong, J.C. & Jung, H.K. 2010. Geostatistical integration using 2-D electrical resistivity and 3-D gravity methods for detecting cavities in a karst area. Environ. Earth Sci. 60: 965-974.

Hutchison, C.S. & Tan, N.K.D. 2009. Geology of Peninsular Malaysia. Geological Society of Malaysia, University of Malaya.

Jabatan Mineral dan Geosains Malaysia. 2011. Geology and Mineral Resources of the Kuala Lumpur-Kelang Area. MapReport. p. 22.

Kim, J.H., Yi, M.J., Hwang, S.H., Song, Y., Cho, S.J. & Lee, S.K. 2003. Application of integrated geophysical methods to investigate the cause of ground subsidence of a highly civilized area. Journal of Geosystem Engineering 6(3): 74-80.

Mohamad Ayob. 1970. Quaternary sediments at Sungai Besi, West Malaysia. Geological Society of Malaysia Bulletin 3: 53-61.

Muhamad Zaki, Z. 2019. Cavities detection by using microgravity and 2-D resistivity method in karst area. Master Dissertation, Universiti Sains Malaysia (Unpublished).

Neumann, R. 1967. Gravimetry of high precision application to cavities research. Geophysical Prospecting: 34-116.

Nouioua, I.A., Rouabhia, C., Fehdi, M.L., Boukelloul, L., Gadri, D., Chabou, R. & Mouici. 2013. The application of GPR and electrical resistivity tomography as useful tools in detection of sinkholes in the Cheria Basin (northeast of Algeria). Environ. Earth Sci. 68: 1661-1672.

Reynolds, J.M. 1997. An Introduction to Applied and Environmental Geophysics.  Chichester: John Wiley & Sons.

Sobh, M. 2013. Imaging Subsurface Cavities Using Geoelectric Tomograpgy, Ground-penetrating Radar and Microgravity. Near Surface Geoscience 2013, 19th European Meeting of Environmental and Engineering Geophysics.

Telford, W.M., Geldart, L.P. & Sheriff, R.E. 1990. Applied Geophysics. Cambridge: Cambridge University Press.

Trepil Fouzie, M.A. 2021. Integrated geophysical survey in identifying ground subsidence-prone area. Master Dissertation, Universiti Sains Malaysia (Unpublished).

Youssef, A.M., Al-Harbi, H.M., Gutierrez, F., Zabramwi, Y.A., Bulkhi, A.B., Zahrani, S.A., Bahamil, A.M., Zahrani, A.J., Otaibi, Z.A. & El-Haddad, B.A. 2016. Natural and human-induced sinkhole hazards in Saudi Arabia: Distribution, investigation, causes and impacts. Hydrogeol. J. 24: 625-644.

 

*Pengarang untuk surat-menyurat; email: mmnordiana@usm.my

 

 

 

 

 

 

 

 

           

sebelumnya