Sains Malaysiana 54(6)(2025): 1465-1475
http://doi.org/10.17576/jsm-2025-5406-03
Utilizing Gravity Surveys
for Subsurface Feature Identification in Foundation Planning
(Menggunakan Tinjauan Graviti untuk Pengecaman Ciri Subpermukaan dalam Perancangan Asas)
NORDIANA MOHD MUZTAZA1,6,*, THANATH GOPALAN2,
NUR AMANINA MAZLAN2, JAMALUDIN OTHMAN3, NAZRIN RAHMAN4,
NAJMIAH ROSLI4, ROSLI SAAD1,4,6, FARID
NAJMI ROSLI1,4, ATHIRAH ROSLI4 & YASIR
BASHIR5
1School
of Physics, Universiti Sains Malaysia, 11800 USM, Pulau Pinang, Malaysia
2Mass Rapid Transit Corporation Sdn Bhd Headquarters, Tingkat 5, Menara I & P1, 46 Jalan
Dungun, Bukit Damansara, 50490 Kuala Lumpur, Malaysia
3SubMAP
Geophysical Services Sdn. Bhd, A-5-10,
Empire Tower, SS16/1, 40750 Subang Jaya, Selangor, Malaysia
4Global GeoExperts Sdn. Bhd.,
737-6-5, Kompleks Sri Sg Nibong,
Jalan Sultan Azlan Shah, 11900 Bayan Lepas, Pulau Pinang, Malaysia
5Geophysical
Engineering, Istanbul Technical University, Istanbul, Turkey
6Pusat Geokejuruteraan Tropika (GEOTROPIK), Aras 2 Blok D03, Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor,
Malaysia
Diserahkan: 12 Jun 2024/Diterima:
28 Mac 2025
Abstract
Understanding the distribution and
extent of solution features such as cavities and pinnacles in limestone bedrock
is crucial for anticipating potential challenges and planning appropriate
foundation solutions. This
study employed microgravity surveying to complement available borehole data and
map karst features, particularly cavities, within the limestone bedrock. The survey was conducted on a 5 m ×
5 m grid interval, establishing a total of 91 stations. Reduced Bouguer and
residual anomalies were contoured and plotted using the GEOSOFT Oasis Montaj Mapping system. Anomalies of interest were further
analyzed through 2-D gravity modeling using PotentQ software to determine the dimensions of the causative bodies. The survey
results, presented as Bouguer, residual, and Bouguer anomaly horizontal
gradient maps, showed a small range of gravity values (-9.24 to -9.10 mGal), indicating minimal variation in limestone bedrock
topography. Gravity highs were associated with shallow limestone bedrock, while
isolated gravity lows suggested the presence of cavities. Horizontal gradient
maps highlighted peaks corresponding to the edges of these cavities and
potential channel-like features. Borehole data corroborated the microgravity
findings, with bedrock encountered at depths between 9.6 m and 12.3 m indicating
deeper bedrock towards the south. The 2-D gravity modeling suggested a
sediment-filled cavity approximately 7 m thick and 15 m wide in an east-west
orientation, aligning well with borehole data. The combined use of borehole
data and microgravity surveying proved effective in characterizing subsurface
karst features, providing valuable insights for foundation planning leading to safer and more efficient
construction practices.
Keywords: Anomaly;
Bouguer; cavities; limestone; microgravity
Abstrak
Pengetahuan tentang taburan dan ciri larutan seperti rongga dan puncak batu kapur adalah penting untuk meramal potensi cabaran dan merancang pembinaan tapak yang sesuai. Kajian ini menggunakan survei mikrograviti untuk melengkapkan data lubang bor yang sedia ada dan memetakan ciri karst, khususnya rongga dalam batuan kapur. Survei dilakukan dengan sela grid 5 m × 5 m, berjumlah 91 stesen. Anomali Bouguer yang dikurangkan dan baki digambarkan menggunakan sistem pemetaan GEOSOFT Oasis Montaj. Anomali yang menarik dianalisis lebih lanjut melalui pemodelan graviti 2-D menggunakan perisian PotentQ untuk menentukan dimensi jasad yang menjadi punca. Keputusan survei yang diketengahkan sebagai peta anjakan Bouguer, baki dan gradien mendatar anjakan Bouguer mendedahkan julat kecil dengan nilai graviti (-9.24 hingga -9.10 mGal), menunjukkan variasi minimum dalam topografi batuan kapur. Anjakan graviti tinggi dikaitkan dengan batuan kapur cetek, manakala anjakan graviti rendah menunjukkan kehadiran rongga. Peta gradien mendatar menunjukkan puncak yang sepadan dengan tepi rongga ini dan ciri potensi berbentuk saluran. Data lubang bor mengesahkan penemuan mikrograviti dengan batuan kapur dijumpai pada kedalaman antara 9.6 m dan 12.3 m menunjukkan batuan kapur yang lebih dalam ke arah selatan. Pemodelan graviti 2-D menyarankan keberadaan rongga berisi endapan dengan ketebalan kira-kira 7 m dan lebar 15 m dengan orientasi timur-barat, sejajar dengan data lubang bor. Penggunaan data lubang bor dan survei mikrograviti terbukti berkesan dalam pencirian karst di bawah permukaan, memberikan maklumat penting untuk perancangan tapak yang lebih selamat dan cekap dalam amalan pembinaan.
Kata kunci: Anomali; batu kapur; Bouguer; mikrograviti; rongga
RUJUKAN
Abdeitawab, S. 2013. Karst limestone foundation geotechnical
problems, detection and treatment: Case studies from Egypt and Saudi
Arabia. International Journal of Scientific & Engineering Research 4: 376-387.
Agus, S., Yoichi, F., Jun, N. & Takahito, K. 2015. Detecting land subsidence using gravity
method in Jakarta and Bandung Area, Indonesia. Procedia Environmental Sciences 23: 17-26.
Ahmad, T.I. & Noorliza, C.L. 2004. Detecting subsurface
voids using the microgravity method - A case study from Kuala Lipis, Pahang. Geological
Society of Malaysia Bulletin 48: 31-35.
Arisona, A., Ishola, K.S., Muliddin, M., Hamimu, L.A. & Hasria, H. 2023. The potential of microgravity technique in
subsurface cavities detection at Chan Sow Lin Site in Kuala Lumpur, Malaysia: A
case study. Modeling Earth Systems and Environment 9: 771-782.
Beres, M., Luetscher, M. &
Olivier, R. 2001. Integration of ground-penetrating radar and microgravimetric
methods to map shallow caves. Journal of Applied Geophysics 46(4): 249-262.
Branston, M.W. & Styles,
P. 2003. The application of time-lapse microgravity for the investigation and
monitoring of subsidence at Northwich, Cheshire. Quarterly Journal of Engineering Geology and
Hydrogeology 36(3): 231-244.
Eslam, E., Ahmed, S. & Keisuke, U.
2001. Detection of cavities and tunnels from gravity data using a neural
network. ASEG Extended Abstracts 2001(1):
1-5. DOI: 10.1071/ASEG2001ab036
Gambetta, M., Armadillo, E., Carmisciano, C., Cocchi, L. & Tontini, F.C. 2011. Determining geophysical
properties of a near-surface cave through integrated microgravity vertical
gradient and electrical resistivity tomography measurements. J. Cave Karst Stud. 73: 11-15.
Gómez, O. & Martín, C. 2012. Assessing the risk of
subsidence of a sinkhole collapse using ground penetrating radar and electrical
resistivity tomography. Engineering Geology 149-150: 1-12.
Gyesoon, P., Samgyu, P., Myeong, J.Y., Hyoungrae, R., Seong,
J.C. & Jung, H.K. 2010. Geostatistical integration using 2-D electrical
resistivity and 3-D gravity methods for detecting cavities in a karst area. Environ.
Earth Sci. 60: 965-974.
Hutchison,
C.S. & Tan, N.K.D. 2009. Geology of
Peninsular Malaysia. Geological Society of Malaysia, University of Malaya.
Jabatan Mineral dan Geosains Malaysia. 2011. Geology and Mineral Resources of the Kuala
Lumpur-Kelang Area. MapReport. p. 22.
Kim, J.H., Yi, M.J., Hwang,
S.H., Song, Y., Cho, S.J. & Lee, S.K. 2003. Application of integrated
geophysical methods to investigate the cause of ground subsidence of a highly
civilized area. Journal of Geosystem
Engineering 6(3): 74-80.
Mohamad Ayob.
1970. Quaternary sediments at Sungai Besi, West
Malaysia. Geological Society of Malaysia
Bulletin 3: 53-61.
Muhamad Zaki, Z. 2019.
Cavities detection by using microgravity and 2-D resistivity method in karst
area. Master
Dissertation, Universiti Sains Malaysia (Unpublished).
Neumann,
R. 1967. Gravimetry of high precision application to cavities research. Geophysical
Prospecting: 34-116.
Nouioua, I.A., Rouabhia, C., Fehdi, M.L., Boukelloul, L.,
Gadri, D., Chabou, R. & Mouici. 2013. The application of GPR and electrical
resistivity tomography as useful tools in detection of sinkholes in the Cheria
Basin (northeast of Algeria). Environ. Earth Sci. 68: 1661-1672.
Reynolds, J.M. 1997. An
Introduction to Applied and Environmental Geophysics. Chichester: John Wiley & Sons.
Sobh, M. 2013. Imaging
Subsurface Cavities Using Geoelectric Tomograpgy, Ground-penetrating Radar and
Microgravity. Near Surface Geoscience 2013, 19th European Meeting of
Environmental and Engineering Geophysics.
Telford, W.M., Geldart, L.P. & Sheriff, R.E. 1990. Applied Geophysics. Cambridge: Cambridge
University Press.
Trepil Fouzie, M.A. 2021.
Integrated geophysical survey in identifying ground subsidence-prone area. Master Dissertation, Universiti Sains Malaysia
(Unpublished).
Youssef, A.M., Al-Harbi, H.M., Gutierrez, F., Zabramwi, Y.A., Bulkhi, A.B.,
Zahrani, S.A., Bahamil, A.M., Zahrani, A.J., Otaibi, Z.A. & El-Haddad, B.A. 2016. Natural and
human-induced sinkhole hazards in Saudi Arabia: Distribution, investigation,
causes and impacts. Hydrogeol. J. 24: 625-644.
*Pengarang untuk surat-menyurat; email: mmnordiana@usm.my